
Хорда AW в задачах и формулах 
 

Пусть биссектриса угла A в треугольнике ABC при продолжении пересекает 

описанную около него окружность ω в точке W (рис.1). Хорда AW окружности 

ω обладает рядом полезных, важных свойств и формул, которые делают эту 

хорду активной участницей разнообразных задач, включая конкурсные и 

олимпиадные. Поэтому представляется уместным повести обстоятельный 

разговор о хорде AW. 

Задача 1. 

Хорда AW делит пополам угол OAH1, где O – центр описанной окружности 

треугольника ABC, AH1 – высота в этом треугольнике. Докажите! 

Доказательство. 

Очевидно, BW = CW – как хорды в окружности ω, стягивающие равные 

дуги. Тогда радиус OW BC  (рис.2). Поскольку 1 2    (OA = OW = R) 

и 1 3   – внутренние накрест лежащие при параллельных прямых OW 

и AH1, 2 3   и AW – биссектриса 1OAH . 

Замечание. Все остается в силе и в случае  тупоугольного треугольника 

ABC. Убедитесь в этом самостоятельно. 

 

Задача 2. 

 В треугольнике ABC стороны AC и AB соотвествтвенно равны b и c. AK – проекция хорды AW на 

сторону AC. Докажите, что 
2

b c
AK


  и 

2

b c
CK


 . 

Доказательство. 

Продолжим WK до пересечения с ω в точке D и проведем ||DP AC  

(рис.3). Тогда PW – диаметр ω     ( 90PDW   ), а CDPA – равнобокая 

трапеция, так как она вписана в окружность ω. 

Тогда и дуги CD и AP – равны. Но PAB PDC   (PW – диаметр ω). 

Следовательно, DP AB  . Равны и стягивающие их хорды: 

DP = AB = c. Проведем PT AC . Поскольку PTKD – прямоугольник, 

то KT = DP = c. AT = CK (CDPA – равнобокая трапеция). 

AT + CK = AC – TK =b – c (считаем, что b > c). Значит, 
2

b c
CK


 ; 

2 2

b c b c
AK b

 
   . 

Задача 3. 

Докажите справедливость формулы для хорды AW: 

2cos
2

b c
AW

A


 . 



Доказательство. 

Проведем WK AC . Согласно задаче 2 
2

b c
AK


  (рис.4). Тогда из прямоугольного AKW  

получаем: 

cos
2

AK
AW

A
 , или 

2cos
2

b c
AW

A


 . 

                          

Задача 4. 

С помощью хорды AW докажите формулу биссектрисы: 
2

cos
2

a

bc A
l

b c



. 

Доказательство. 

Пусть aAL l  – биссектриса угла A треугольника ABC. Покольку AWB ACB   – вписанные, 

опираются на одну дугу в окружности ω, описанной около ABC  (рис.5), то AWB ACL  . Из 

этого подобия следует: al b

c AW
 , откуда a

bc
l

AW
 . Воспользовавшись формулой задачи 3, получаем: 

2
cos

2
a

bc A
l

b c



. 

Задача 5. 

Из точки L – основания биссектрисы угла A треугольника ABC – 

проведены перпендикуляры LF и LN, к сторонам AC и AB 

соответственно (рис.6). Докажите, что площадь треугольника ABC 

можно найти по формуле: 
1

2
S AW FN   (Международные 

олимпиады) 

Доказательство. 

Около четырехугольника AFLN  можно описать окружность (два 

противоположных угла равны по 90о) с диаметром AL = la. Тогда по 

теореме синусов: 
sin

a

FN
l

A
 , откуда sinaFN l A  . 

В то же время 

2cos
2

b c
AW

A


  (задача 3). Следовательно, 

1 1
sin

2 2
2cos

2

a

b c
AW FN l A

A


     .  



С учетом формулы биссектрисы 
2

cos
2

a

bc A
l

b c



 (задача 4) получаем: 

1 1 2
cos sin

2 2 2
2cos

2

b c bc A
AW FN A

A b c


     


, или 

1 1
sin

2 2
AW FN bc A S    , 

что и требовалось доказать!.. 

Задача 6. 

Отрезок WD, проведенный параллельно AB, пересекает BC в точке N 

(рис.7). Докажите, что хорда AW касается окружности q, описанной около 

треугольника CNW. 

Доказательство. 

Пусть 1 2
2

A
     и 3 2   – вписанные, опираются на одну дугу в 

окружности ω. 4 2
2

A
    – внутренние накрест лежащие 

(WD || AB). Поскольку 4 3  , то AW – касательная к окружности q. 

Задача 7. 

Если из точки W как из центра раствором циркуля, равным WB = WC 

провести окружность, то она пересечет хорду AW в точке I – инцентре 

треугольника ABC. Докажите! 

Доказательство. 

Пусть проведенная окружность пересекает AW в точке Q. Соединим C 

и Q. Пусть также углы ACQ и BCQ соответственно равны x и y (рис.8). 

Очевидно, 1 2 3
2

A
     . Тогда 1CQW x    (внешний для 

AQC ). А 3QCW y   . Так как WQ = WC (радиусы проведенной 

окружности), то получаем: 1 3x y     , или  
2 2

A A
x y   , откуда 

x = y и CQ – биссектриса ABC . То есть, Q I . 

Замечание. Фактически мы сейчас доказали «теорему 

трилистника»: IW = BW = CW. 

Задача 8. 

Окружность t с центром W радиуса WA пересекает 

прямые AB и AC в точках T и P соответственно 

(рис.9). Докажите, что PC = c, BT = b. 

Доказательство. 

Проведем WK AC  и WD AB . Очевидно, 

WK WD . Но 
2

b c
AK


  (задача 2). Тогда 

AP = b + c (диаметр, перпендикулярный хорде, делит 

ее пополам). Поскольку AC = b, то PC = c. 

Аналогично AT = b + c, и AB = c, тогда TB = b. 



 

Задача 9. 

Докажите, что 
AW b c

IW a


 . 

Доказательство. 

Поскольку 2 3   – вписанные, опираются на одну дугу в окружности ω, и 

4 5   – аналогично, то BWL AWB   (рис.10). Тогда 
AW c

BW BL
  (1). 

Найдем длину отрезка BL. По свойству биссектрисы угла A   
c BL

b CL
 , где 

CL a BL  . Получаем: 
c BL

b a BL



,  откуда 

ac
BL

b c



. Подставим в (1). 

( )AW c b c

BW ac


 , или 

AW b c

BW a


 . Поскольку  BW = CW = IW (задача 7), то 

AW b c

IW a


 . 

Задача 10. 

Докажите справедливость формулы: 
2 2AW IW bc  . 

Доказательство. 

Для доказательства воспользуемся следующим свойством равнобедренного 

треугольника: пусть в ABC  AB = AC = b. Точка D делит основание BC на 

отрезки e и f (рис.11). Тогда 
2 2AD b ef  . Для доказательства следует провести 

высоту из вершины A и дважды воспользоваться теоремой Пифагора. 

Перейдем к доказательству формулы. Обозначим биссектрису AL = la, LW = t, 

CL = x и BL = y (рис.12). 
2 2 2 2( ) 2a a aAW l t l l t t     

. 

По формуле биссектрисы 
2

al bc xy  . По теореме о произведении 

отрезков хорд al t xy  . А согласно свойству равнобедренного 

треугольника для BWC  (BW = CW)   t2 = BW2 – xy или t2 = IW2 – xy, 

поскольку BW = CW =IW. 

Значит, 
2 22AW bc xy xy IW xy     . После сокращений получаем: 

AW2 = IW2 + bc. 

Задача 11. 

Докажите, что 

2
AW b c

LW a

 
  
 

. 

Доказательство. 

Очевидно, 1 3   и 4 5   – вписанные, опираются попарно на одну дугу в окружности ω 

(рис.13). То есть, ACL BWL   – по двум углам. 

Значит, 
b BW

CL LW
 . Но CL = BC – BL, где BC = a и 

ac
BL

b c



 (задача 9). 



Следовательно, 
ac ab

CL a
b c b c

  
 

. Получаем: 
( )BW b b c b c

LW ab a

 
  . 

Заменим BW на IW. Тогда 
IW b c

LW a


 . 

Запишем требуемое отношение 
AW

LW
 таким образом: 

AW AW IW

LW IW LW
  . 

Так как 
AW b c

IW a


  (задача 9), то 

2
AW b c

LW a

 
  
 

. 

Задача 12. 

Известно, что в треугольнике ABC хорда AW = R + 2r. Докажите, что либо A = 60o , либо 
2

a

R
h r  . 

Доказательство. 

Поскольку AW = AI + IW = R+2r, то найдем произведение AI IW . Из 

AIK  находим: 

sin
2

r
AI

A
  (рис.14). По теореме синусов для ABW : 

2

sin
2

BW
R

A
 . Но BW = IW, тогда 2 sin

2

A
IW R  . Следовательно, 

2 sin 2
2

sin
2

r A
AI IW R Rr

A
     . 

Итак, мы получили систему уравнений:  

2

2

AI IW R r

AI IW Rr

  


 
. 

Очевидно, ее решениями являются: 1) AI = 2r; IW = R;   2) AI = R; IW = 2r. 

В первом случае, когда AI = 2r, из AIK  находим: 30
2

A
   и 60A  . 

Во втором случае IW = 2r и, с учетом формулы 
AW b c

IW a


  (задача 9), получаем: 

2

2

R r b c

r a

 
 . 

Добавим к обоим частям равенства по 1: 
4 2

2

R r p

r a


 . Или 

4
4

S
R r

a
  , 

2
4 aah

R r
a

  , откуда 

2
2

a

R
h r  . 

Задача 13. 

Окружность q касается стороны BC, хорды AW и окружности ω, описанной около треугольника ABC. 

Причем, хорды AW она касается в точке P. Докажите, что P совпадает с инцентром I треугольника 

ABC. 



Доказетельство. 

Пусть q касается ω в точке T, а стороны BC – в точке F (рис.15). Тогда 

точки T; F; W лежат на одной прямой – по лемме Архимеда 

(покажите!). 

Поскольку 2 3   – вписанные, опираются на одну дугу в 

окружности ω, а 1 4    (аналогично), то CWF TWC   (у них 

также есть общий 5 ). Это подобие дает следующую пропорцию: 

CW TW

WF CW
 , откуда 2 2WT WF CW WI    (CW = IW). 

Но для окружности q по теореме о квадрате касательной 
2WT WF WP  , то есть WP = WI. Так как точка P лежит на биссектрисе 

угла A, то P I . 

Задача 14. 

Точка Q – середина дуги BAC окружности ω, описанной около треугольника ABC. QK AC  

(рис.16). Докажите, что описанная окружность треугольника AKB делит хорду AW пополам. 

Доказательство. 

По теореме Архимеда CK = KA + AB (покажите!). 

Продолжим CA за точку A на отрезок AD = AB = c. Тогда в 

равнобедренном DAB  1 2
2

A
     (поскольку внешний 

BAC A  ). Очевидно, 3 4
2

A
    . Так как 5 6   

(вписанные, опираются на одну дугу в окружности ω), то 

DCB AWB   – по двум углам. Пусть N – середина хорды 

AW. Значит, BK и BN – соответствующие медианы в 

подобных треугольниках DCB и AWB. Значит, 

DKB ANB  . А это и означает, что точки A; K; N; B  

лежат на одной окружности. 

Задача 15. 

Докажите справедливость неравенства для треугольника ABC: 

2
2

a

A
a l tg  , где  BC = a, AL = la – биссектриса угла A.  

Доказательство. 

Пусть Q – середина дуги BAC окружности ω, описанной около ABC . 

Тогда, очевидно, WQ – диаметр ω и WQ пересекает BC в точке M1 – 

середине BC (рис.17). Так как 2 1
2

A
     (вписанные, опираются на 

одну дугу в окружности ω), то из 1QM C  находим: 1
2 2

a A
QM ctg  . 

Поскольку QW – диаметр окружности ω, а AW – хорда, то QW AW . С 



учетом того, что  1WM WL  (катет не превышает гипотенузу в 1WM L ) 1WQ WM AW WL    (в 

левой части неравенства от большего отрезка вычитаем меньший). Следовательно, 1 aQM AL l  . Но 

1
2 2

a A
QM ctg  . То есть, ctg

2 2
a

a A
l , или 2

2
a

A
a l tg  . 

 

Несколько задач, связанных с хордой AW, предложим для самостоятельного решения. 

Задача 16. Описанная окружность треугольника BLW пересекает продолжение AB в точке N. 

Докажите, что CN AW . 

Задача 17. Докажите, что площадь четырехугольника ABWC можно вычислить по формуле 

21
sin

2
ABWCS AW A  . 

Задача 18. Серединные перпендикуляры к AB и AC пересекают хорду AW в точках F и N 

соответственно. Докажите, что AF = NW. 

Задача 19. AK – проекция хорды AW на сторону AC треугольника ABC. Пусть AL – биссектриса в 

треугольнике ABC площади S. Докажите, что 
1

2
AKLS S . 

Задача 20. Сторона BC треугольника ABC делит хорду AW в отношении k (
AL

k
LW

 ). Найдите 

периметр треугольника ABC, если BC = a.                    Ответ. ( 1 1)a k   . 

 

Г.Филипповский 
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