
О луче AO и его роли в задачах геометрических Олимпиад 
 

Пусть точка O – центр окружности, описанной около остроугольного треугольника ABC. Мы 

поведем наш разговор о луче AO и его активном участии в разнообразных геометрических задачах. 

Но, прежде чем перейти к задачам, напомним две важные леммы геометрии треугольника, которые 

связаны с лучом AO. 

Лемма 1. 

Пусть BH2 и CH3 – высоты в треугольнике ABC. Докажите, что луч 

AO перпендикулярен прямой H2H3. 

Доказательство. 

Около четырехугольника BH3H2C можно описать окружность с 

диаметром BC ( 3 2 90BH C BH C   ). Тогда 1 B   (рис.1). Так 

как 2AOC B   (центральный), то 
180 2

2 3 90
2

B
B


      . 

Поскольку 1 2 90    , то 2 3AO H H . 

Лемма 2. 

В треугольнике ABC точка H – ортоцентр (точка пересечения высот), а 

M1 – середина стороны BC. Отрезок HM1 удвоен за точку M1 – 

получили точку D. Докажите, что луч AO проходит через D. 

Доказательство. 

Проведем диаметр AD1 в окружности ω, описанной около ABC , и 

соединим точки O и M1 (рис.2). Так как 1

1

2
OM AH  (покажите!), то 

OM1 – средняя линия в треугольнике AHD1, то есть HM1 = M1D1. В 

таком случае точки D1 и D совпадают. 

Замечание. Лемму 2 часто фомулируют так: точки, симметричные 

ортоцентру относительно середин сторон треугольника, лежат на его 

описанной окружности. Более того, они диаметрально противоположны вершинам треугольника (в 

нашем случае AD – диаметр). 

Отметим, что лемма 1 и лемма 2 сами по себе помогают в решении многих геометрических задач и, 

безусловно, каждая из них заслуживает отдельного разговора. 

Но в контексте данной статьи мы остановимся на иных свойствах 

луча AO. Быть может, менее знаменитых, но также достаточно 

полезных и важных. 

Задача 1. 

В треугольнике ABC (AC > AB) провели биссектрису AL1 и на 

стороне AC отложили отрезок AF = AB. Докажите, что 1AO FL . 

Доказательство. 

Очевидно, 1 1AFL ABL    – по двум сторонам и углу 
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ними. Следовательно, 1AFL B   (рис.3). Так как 2 3 90 B    , 

то 1AO FL . 

Задача 2. 

В треугольнике ABC (b > c) CH3 – высота, а M1 – середина BC. Через 

точку C под углом B к стороне AC проведен луч. Он пересекает 

прямую H3M1 в точке F. Докажите, что луч AO проходит через F. 

Доказательство. 

H3M1 –медиана, проведенная к гипотенузе в 3BH C . Поэтому 

H3M1 = BM1 и 1 B  . Поскольку 1 ACF  , то точки A, C, F, H3 

лежат на одной окружности. При этом AC – ее диаметр ( 3 90AH C   ). Тогда 90CFA    – 

вписанный, опирается на диаметр в этой окружности. 

Так как ACF B  , то 90CAF B   . Но и 90CAO B   , как было показано в лемме 1. Значит, 

точки A, O, F принадлежат одной прямой. 

Задача 3. (О.Карлюченко) 

Луч AO пересекает сторону BC треугольника ABC в точке T. На 

отрезке AT как на диаметре построена окружность q, которая 

пересекает BC, AC и AB соответственно в точках D, E, F. Пусть 

AE x  ; AF y   и DT z  . Докажите, что x = y + z (рис.5). 

Доказательство. 

Как уже было показано, 2 90 B   . Соединим A и D. 

90ADT    – вписанный, опирается на диаметр в окружности q. Тогда 

в ADB  угол 90BAD B  . Поскольку 2 3  , то ET FD  . Но 

AT – диаметр окружности q. Следовательно, AE AF DT   , или 

x = y + z, что и требовалось доказать! 

Задача 4.  

Луч AO пересекает BC в точке T. Найдите углы треугольника ABC, 

если 
1

2
OT CT BT  . 

Решение. 

Пусть OT = CT = x и BT = 2x. Проведем серединный перпендикуляр OM1. Тогда CM1 = BM1 = 1,5x и 

1
2

x
TM  . 

Катет TM1 равен половине гипотенузы OT, а значит, 1 30TOM    и 1 60OTM   . Но 1OTM  – 

внешний для OTC . Тогда 30COT OCT    . В таком случае, 2 180 30 150AOC B       , 

откуда 75B   . 1 1 30 30 60COM BOM A        , то есть, 60A  . Значит, 

180 75 60 45C       . 

 

 



Задача 5. 

В треугольнике ABC луч CN проведен так, что 1 C  , а луч BK так, что 2 B   (рис.7). NC и KB 

пересекаются в точке F. Докажите, что луч AO проходит 

через F. 

Доказательство. 

BA и CA – внешние биссектрисы в треугольнике BFC. Тогда 

вершина A – центр вневписанной окружности BFC , а FA – 

внутренняя биссектриса в этом треугольнике. 

Пусть точка Q – инцентр в BFC . Значит, BQ – биссектриса 

FBC  и CQ – биссектриса FCB . 90ABQ ACQ     (как 

углы между биссектрисами смежных углов). Около 

четырехугольника ABQC можно описать окружность (два 

противоположных угла равны по 90о). Очевидно, точка O – 

середина AQ – ее центр (AO = OB = OC). В таком случае A –

 O – Q – F – одна прямая. 

Задача 6. 

Точки D и F соответственно на сторонах AC и AB треугольника ABC такие, 

что DF||BC. Перпендикуляр к AC в точке D и перпендикуляр к AB в точке 

F пересекаются в точке P. Докажите, что луч AO проходит через P. 

Доказательство. 

Пусть M2 – середина AC и M3 – середина AB. Тогда OM2 и OM3 – 

серединные перпендикуляры к сторонам AC и AB соответственно (рис.8). 

Поскольку четрырехугольники AM2OM3 и ADPF гомотетичны с центром гомотетии A, а O и P – 

соответственные точки при этой гомотетии, то, очевидно, точки A, O, P лежат на одной прямой. 

Задача 7. 

Точка B1 симметрична вершине B относительно стороны AC треугольника ABC и окружность s 

описана около 1ABB . Точка C1 симметрична вершине C относительно стороны AB и окружность q 

описана около 1ACC . Окружности s и q вторично пересекаются в точке P. Докажите, что луч AO 

проходит через P. 

Доказательство. 

Пусть серединные перпендикуляры к AB и BB1 пересекаются в точке T (T лежит на прямой AC) и T – 

центр окружности s. Пусть также серединные перпендикуляры к AC и CC1 пересекаются в точке G 

(G принадлежит прямой AB) и G – центр окружности q (рис.9). В таком случае O – пересечение 

серединных перпендикуляров к AB и AC – ортоцентр в ATG . Значит, AO TG . Но и AP TG  

(общая хорда перпендикулярна линии центров). Следовательно, A – O – P – одна прямая. 



 

Задача 8. 

Из M1 – середины BC – проведены перпендикуляры M1D и 

M1F к сторонам AC и AB соответственно. Точка N – середина 

DF. Докажите, что луч AO параллелен прямой M1N. 

Доказательство. 

Проведем высоты BH2 и CH3. Очевидно, D – середина CH2 и F 

– середина BH3 (согласно теореме Фалеса). Пусть T – 

середина H2H3 и DTFM1 – параллелограмм Вариньона для 

четырехугольника BH3H2C (рис.10). Значит, T – N – M1 – одна 

прямая. Поскольку 2 1 3 1

1
     

2
H M H M BC   (медианы , 

проведенные к гипотенузе в треугольниках BH2C и BH3C), то 

1 2 3M T H H . Так как и 2 3AO H H  (лемма 1), то луч AO 

параллелен прямой T – N – M1. 

Задача 9. 

BH2 и CH3 – высоты в треугольнике ABC. На стороне AC взята точка 

P так, что AP = CH2. На стороне AC взята точка P так, что AP = CH2. 

На стороне AB точка Q такова, что AQ = BH3. Докажите, что луч AO 

делит PQ пополам. 

Доказательство. 

Пусть AO пересекает PQ в точке E. Покажем, что треугольники APO 

и AQO равновелики: у них общее основание AO, тогда будут равны 

высоты, проведенные из вершин P и Q. А это и будет означать, что 

PE = EP. Проведем серединные перпендикуляры OM2 и OM3 (рис.11). 



Так как 2AOM B   ( 2AOC B    – центральный), то 2 cos cosOM AO B R B   . 2 cosCH BC C   – 

из 2BH C  и 2 cosAP CH BC C   . Если взять отрезок AP за основание APO , то 

2

1 1
cos cos

2 2
APOS AP OM BC C R B      (1). 

Из 3AOM  находим: 3 cosOM R C  . А из 3BH C : 3 cosBH BC B AQ   . Тогда найдем площадь 

AQO , приняв за основание отрезок AQ. 

3

1 1
cos cos

2 2
AQOS AQ OM BC B R C      (2) 

Сравнение (1) и (2) дает равновеликость треугольников APO и AQO, что завершает доказательство. 

Задача 10. 

AH1; BH2; CH3 – высоты в треугольнике ABC. Окружность t с центром A радиуса AH1 пересекает 

прямую H2H3 в точках D и F. Лучи BF и DC пересекаются в точке T. Докажите, что A – O – T – одна 

прямая. 

Доказательство. 

Треугольники AH2H3 и ABC подобны с 

коэффициентом подобия, равным cos A 

(покажите!). Проведем высоту AQ в 2 3AH H  

(рис.12). При этом A – Q – O – одна прямая, так как 

2 3AO H H . С учетом подобия 
1

cos
AQ

A
AH

 . Но 

1 tAD AH R  , значит, cos
AQ

A
AD

  и DAQ A  . 

Как мы уже не раз показали, 

90CAO ACO B    . Тогда 

(90 ) 90 90DAC A B A B C          . 

Поскольку 1 90CAH C    (из 1CAH ), то 

1ADC AH C    – по двум сторонам и углу между 

ними. Значит, 1 90ADC AH C    , то есть, CD – 

касательная к окружности t. Аналогично покажем, 

что и BF – касательная к t. Следовательно, 

касательные TD и TF – равны. Теперь очевидно, что 

A – Q – O – T – одна прямая. 

Еще несколько задач, связанных с лучом AO, предложим решить самостоятельно. 

Задача 11. Прямая H2H3 (BH2 и CH3 – высоты в треугольнике ABC) пересекает описанную около него 

окружность ω в точках D и F. Касательные к ω в точках D и F пересекаются в точке T. Докажите, что 

лучи TO и AO совпадают. 

Задача 12. AL – биссектриса в треугольнике ABC. Окружность q описана около треугольника ABL. 

Перпендикуляр из вершины B к AL пересекает q в точке P. Докажите, что луч AO проходит через P. 



Задача 13. Луч AO пересекает сторону BC в точке T. Докажите, что 
| cos( ) |

cos

AO B C

OT A


 . 

Задача 14. AH1 – высота в треугольнике ABC. На стороне BA отложим отрезок BF = BH1. На стороне 

CA отложим отрезок  CD = CH1. Докажите, что луч AO и серединный перпендикуляр к DF 

пересекаются на описанной окружности треугольника ABC. 

Задача 15. На AO как на хорде построена окружность t. Она пересекает стороны AC и AB в точках P 

и Q соответственно. Докажите, что ортоцентр треугольника POQ лежит на стороне BC. 

Задача 16. CH3 – высота в треугольнике ABC, M1 – середина BC.  Луч AO пересекается с прямой 

H3M1 в точке F. Найдите величину угла AFC. (Ответ. 90о) 

Задача 17. В треугольник ABC вписана окружность s с центром I. K1; K2; K3 – точки касания этой 

окружности со сторонами BC, AC и AB  соответственно. K1P – перпендикуляр на K2K3. Докажите, что 

лучи AO и PI пересекаются на описанной окружности треугольника ABC. 

Задача 18. Луч AO пересекает BC в точке T. Точка M1 – середина BC. Отрезок TM1 удвоен за точку 

M1 – получили точку N. Докажите, что HN||AO (H – ортоцентр в треугольнике ABC). 

Задача 19. AH1 – высота в треугольнике ABC, точка H – ортоцентр. Луч AO пересекает отрезок H2H3 

в точке Q. Отрезок AQ удвоен за точку Q – получили точку K. Докажите, что точки O – H – H1 – K 

лежат на одной окружности. 

Задача 20. Точка H – ортоцентр в треугольнике ABC, M1 – середина BC. Луч AO пересекает BC в 

точке T. Высота AH1 пересекает отрезок H2H3 в точке F. Докажите, что FT||HM1. 

 

Г.Филипповский, 

г.Киев 
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