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Пусть I – точка пересечения биссектрис (инцентр I в треугольнике ABC со 

сторонами BC = a, AC = b, AB =c). Пусть также AL1 – биссектриса угла A в 

этом треугольнике (рис.1). Тогда справедливо соотношение 
1

AI b c

IL a


  (1). 

Соотношение (1) восходит к великому Архимеду, который пользовался им 

для нахождения верхнего и нижнего пределов числа π.  

Для доказательства (1) применим свойство 

биссектрисы: 
b x

c y
  (рис.2). Поскольку 

x y BC a   , то y a x  . Тогда 
b x

c a x



, откуда 

ab
x

b c



. Снова по 

свойству биссектрисы уже для 1ACL  получим: 
1

( )AI b b b c b c

IL x ab a

  
   , 

что и требовалось доказать! 

Опишем окружность ω около ABC  и продолжим биссектрису AL1 до 

пересечения с ω в точке W (рис.3). Четырехугольник ABWC вписан в 

окружность ω. Применим для него теорему Птолемея. Согласно этой 

теореме AW a BW b CW c     . Так как  BW = CW = IW – теорема 

«трилистника», то ( )AW a IW b c    , откуда 
AW b c

IW a


  (2).  

Треугольники AWC и CWL1 подобны. Действительно, угол при вершине W 

общий, а 1
2

A
WCL WAC   . Тогда 

1

CW AW

LW CW
 . Поскольку CW = IW и 

AW b c

IW a


 , получаем 

1

IW b c

LW a


   (3).  

На продолжении луча AW находится точка Ia – центр вневписанной 

окружности, касающейся стороны BC и продолжений двух других 

сторон. Известно, что центр вневписанной окружности лежит на 

пересечении двух внешних и одной внутренней биссектрис (все 

проведены из разных вершин). Тогда в ABC  угол 90aIBI    (BI – 

внутренняя биссектриса, а BIa – внешняя) – рис.4. По свойству 

внешней биссектрисы 
1 1

a

a

AI AI

L I IL
 . Но 

1

AI b c

IL a


  (1). Поэтому 

1

a

a

AI b c

L I a


  (4). 

Замечание. В таком случае имеет место гармоническая четверка 

точек: A; L1; I; Ia, поскольку: 1 1: :a aAI IL AI L I .  



Пусть AH1 = ha – высота в треугольнике ABC, а M1 – середина BC. Известно, что луч M1I отсекает на 

высоте AH1 отрезок AQ = r, где r – радиус вписанной в ABC  окружности (рис.5). Тогда 

1 2 2
1 1 1 1a ah r hQH S pr a b c b c

AQ r r ar ar a a

   
          . 

Таким образом, 1QH b c

AQ a


   (5).   

Найдем длину отрезка M1H1, считая, что b > c (рис.5). 1
2

a
BM   и 

1 cosBH c B   – из 1ABH . Следовательно, 

1 1 1 1 cos
2

a
M H BM BH c B     . Согласно теореме косинусов 

2 2 2

cos
2

a c b
B

ac

 
 . Значит, 

2 2 2 2 2

1 1
2 2 2

a a c b b c
M H c

ac a

  
    . 

Очевидно, в общем случае 

2 2

1 1
2

b c
M H

a


 .  

Пусть вписанная в треугольник ABC окружность касается сторон BC, AC 

и AB в точках K1; K2; K3 соответственно (рис.6). BK1 = BK3; CK1 = CK2; 

AK2 = AK3 (касательные к окружности, проведенные из одной точки, 

равны). Нетрудно подсчитать, что BK1 = BK3 = p – b (p – полупериметр). 

Тогда 1 1 ( )
2 2 2 2

a a a c b b c
M K p b

  
       (в общем случае 

2

b c
). В 

таком случае 

2 2

1 1

1 1

(2

2

b c
M H b ca

b cM K




 



)( )

(

b c

a b c



 )
, то есть 1 1

1 1

M H b c

M K a


  (6). 

Покажем, как предложенные 6 соотношений помогают при решении разнообразных задач. 

Задача 1. 

В треугольнике ABC с тупым углом A биссектриса AL1 пересекает вписанную окружность в точках D 

и F (рис.7). Что больше: AD или FL1? 

 



Решение. 

Согласно (1) 
1

AI b c

IL a


  и 1AI IL  (b + c > a – неравенство треугольника). Отнимем от AI и IL1 по 

радиусу r вписанной окружности и получим 
1AD FL . 

Задача 2. 

Известно, что в треугольнике ABC стороны связаны соотношением: 

b + c = 2a. Докажите, что MI || BC (M – центроид, точка пересечения 

медиан треугольника ABC). 

Доказательство. 

Так как 
1

2
2

AI b c a

IL a a


    и 

1

2
2

1

AM

MM
   (свойство центроида M), то, 

очевидно, MI || BC (рис.8). 

Задача 3. 

В треугольнике ABC выполняется равенство: 
2

A b c
ctg

a


 . Докажите, 

что этот треугольник – прямоугольный. 

Доказательство. 

1

AI b c

IL a


  и 

1 1

AI AC

IL CL
  (по свойству биссектрисы угла ACB). Значит, 

1 2

AC b c A
ctg

CL a


  . Тогда в 1ACL  (рис.9) AC – прилежащий катет, CL1 

– противолежащий катет, то есть 90ACB   . 

Задача 4. 

В треугольнике ABC известны длины отрезков: AL1 = l; L1W = n. Найти 

длину отрезка IW (рис.10). 

Решение. 

Согласно (3) 
1

IW b c

LW a


  и 1

b c b c
IW LW n

a a

 
    . С учетом (2): 

AW b c

IW a


 , получаем: 

b c AW
IW n n

a IW


    , откуда 

IW2 = n∙AW = n(AL1 + L1W) = n(l + n). Значит, ( )IW n l n  . 

Задача 5. 

Докажите, что 

2

1

AW b c

LW a

 
  
 

. 



Решение. 

Запишем соотношение 
1

AW

L W
 так: 

1 1

AW AW IW

LW IW LW
  . Поскольку 

AW b c

IW a


  (2) и 

1

IW b c

LW a


  (3), то 

2

1

AW b c

LW a

 
  
 

. 

Задача 6. 

Известно, что в треугольнике ABC выполнено соотношение 1

1

AL
k

LW
  и BC = a. Найдите периметр 

треугольника ABC. 

Решение. 

1 1AL AW LW   (рис.10). Следовательно, 

2

1 1

1 1 1

1 1
AL AW LW AW b c

LW LW WL a

  
     

 
 (задача 5). Так как 

по условию 1

1

AL
k

LW
 , то 

2

1
b c

k
a

 
  

 
, или 1

b c
k

a


   и 1b c a k   . Значит, 

2 1p a b c a a k       или 2 (1 1)p a k   . 

Задача 7. 

Докажите, что в принятых нами обозначениях выполняется равенство: 

1

1 1

1
ILAI

IL LW
  . 

Доказательство. 

1

AI b c

IL a


  – согласно (1). 1 1

1 1 1

1
IL IW LW IW

LW LW LW


   , где 

1

IW b c

LW a


  – по 

формуле (3). Получаем: 1

1 1

1 1
ILAI b c b c

IL LW a a

  
     

 
. 

Задача 8. 

В треугольнике ABC выполняется равенство: b + c = 2a. Найдите высоту 

AH1, если радиус вписанной окружности равен r. 

Решение. 

Как уже было сказано, луч M1I пересекает высоту AH1 в такой точке Q, что 

AQ = r (рис.11). По формуле (5)  1 2 2

1

QH b c a

AQ a a


   . Тогда QH1 = 2r и 

AH1 = r + 2r = 3r. 

Задача 9. 

Докажите, что сторона BC является биссектрисой угла IH1Ia (рис.12). 

Доказательство. 

Согласно (4) 
1

a

a

AI b c

L I a


 . С учетом (1) получаем: 

1 1

a

a

AI AI

L I IL
 , или 



1

1

a aI L AI

IL AI
 . В таком случае H1L1 – внутренняя биссектриса в 1 aIH I , а 

H1A – внешняя биссектриса в этом треугольнике. 

Задача 10. 

Постройте треугольник ABC по таким трем точкам: I; H1; Ia. 

Решение. 

Соединим точки I; H1; Ia и проведем биссектрису угла IH1Ia (рис.13). 

По задаче 9 она совпадает с прямой BC.  Из инцентра I проведем 

перпендикуляр IK1 = r к прямой BC, а из H1 восстановим 

перпендикуляр к BC, который даст вершину A в пересечении с прямой 

IaI. Затем проведем окружность с центром I радиуса IK1 = r. 

Касательные к ней из вершины A пересекают прямую BC в 

недостающих вершинах B и C. 

Задача 11. 

Постройте треугольник ABC по a; la; b + c. 

Построение. 

Построим отрезок AL1 = la. Построим также точку I – с учетом того, что 

1

AI b c

IL a


  (1). Затем на прямой AL1 построим точку Ia, поскольку 

1

a

a

AI b c

I L a


  (4). Построим окружность q на отрезке IIa как на диаметре 

(рис.14). Через точку L1 проведем в окружности q хорду данной длины a 

(покажите, как это сделать!). В пересечении с окружностью q получим 

вершины B и C.  

Несколько задач на соотношение 
b c

a


 предложим решить 

самостоятельно. 

Задача 12. Через инцентр I треугольника ABC со сторонами a, b, c проведена прямая параллельно 

BC. Она пересекает AC и AB в точках D и F соответственно. Найдите длину отрезка DF. 

Задача 13. В треугольнике ABC угол A  – прямой. Известно, что 
1

3

2

AI

IL
 . Найдите величины углов 

B и C.  

Задача 14. Докажите, что в треугольнике ABC 
1

sin
2

b c

A a


 . 

Задача 15. Докажите справедливость неравенства для произвольного треугольника ABC: 

1 2 3

8

27

AI BI CI

AL BL CL
   . 



Задача 16. Докажите справедливость неравенства: 
1 1

2

b c
M H


 . 

Г.Филипповский 
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