
Старые и новые встречи с теоремой Лейбница 
 

Круг интересов замечательного немецкого ученого Г.В.Лейбница (1646-1716) был 

необычайно широк: юриспруденция и историография, философия и библиотечное дело, 

алхимия и астрология, астрономия и математика. Не случайно Норберт Винер написал о 

нём: “После Лейбница, быть может, уже не было человека, который бы полностью охватил 

всю интеллектуальную жизнь своего времени.” 

Математикой Лейбниц стал заниматься довольно поздно, в 26 лет. Как он сам шутливо 

говорил, “зашёл в математику с чёрного хода”. Тем не менее, заслуги Лейбница в этой 

области знаний чрезвычайно велики! Это и создание (одновременно с Ньютоном, 

независимо друг от друга) интегрального и дифференциального исчисления. Это ряд 

Лейбница для числа 𝜋, и арифмометр Лейбница, и элементы двоичной системы исчисления, 

и “Рассуждения о комбинаторном искусстве”, и работа с комплексными числами, и многое 

другое. Лейбниц ввёл в математику термины: “функция”, “дифференциал”, “бесконечно 

малые”, “абсцисса”, “ордината”, “координаты” … 

Что касается вклада Лейбница в геометрию, то тут следует сказать о теореме, которая 

носит его имя. Теорема Лейбница — важная, полезная, красивая теорема! О её широком, 

эффективном применении мы и поведём дальнейший разговор. Некоторые из 

представленных ниже задач имеют солидный возраст, высокий рейтинг участия в 

математических олимпиадах, турнирах. Другие задачи — совсем юные, новые. Впрочем, 

они стараются не уступать своим старым собратьям ни по уровню сложности ни по 

эмоциям! Отсюда и название статьи: “Старые и новые встречи с теоремой Лейбница”. 

 

Теорема Лейбница. Расстояния от любой точки 𝑋 

плоскости (а вообще говоря и пространства) до 

вершин треугольника 𝐴𝐵𝐶 и до его центроида 𝑀 

связаны соотношением:  

𝑋𝐴2 + 𝑋𝐵2 +  𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2 

Среди нескольких доказательств теоремы 

Лейбница наиболее простым и изящным 

представляется векторное. Приведём его. 

 

Доказательство. Согласно “правилу 

треугольника” сложения векторов имеем:  

𝑋𝐴 =  𝑋𝑀 +  𝑀𝐴 

𝑋𝐵 =  𝑋𝑀 +  𝑀𝐵 

          𝑋𝐶 =  𝑋𝑀 + 𝑀𝐶 (рис. 1) 

Возведём обе части каждого равенства в квадрат и сложим их: 

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2 + 2𝑋𝑀(𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶) 

С учётом известного векторного соотношения 𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶 = 0 получим требуемое:  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2 

 

рис. 1 



Следствия из теоремы Лейбница: 

1) Геометрическим местом точек плоскости, сумма квадратов расстояний от которых до 

всех вершин треугольника постоянна, есть окружность с центром в центроиде 𝑀 

треугольника ∆𝐴𝐵𝐶. 

2) Сумма квадратов расстояний от точки 𝑋 до вершин треугольника будет наименьшей, 

когда 𝑋 ≡ 𝑀 (действительно, в этом случае слагаемое 3𝑋𝑀2 = 0). 

 

Задача 1. Определите вид ∆𝐴𝐵𝐶, если для любой 

точки описанной около него окружности  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 = 𝑐𝑜𝑛𝑠𝑡 

Решение. Согласно теореме Лейбница  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2 

Поскольку отрезки 𝑀𝐴;  𝑀𝐵;  𝑀𝐶 составляют 

каждый 
2

3
 соответствующий медианы (рис. 2), то  

𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 =  
4

9
(𝑚𝑎

2 + 𝑚𝑏
2 + 𝑚𝑐

2) = 𝑐𝑜𝑛𝑠𝑡 

Тогда должно быть постоянным и расстояние 

𝑋𝑀 от любой точки 𝑋 описанной окружности ∆𝐴𝐵𝐶 

до его центроида. Это возможно, когда 𝑀 ≡ 𝑂, где 

𝑂 — центр описанной окружности ∆𝐴𝐵𝐶. В таком 

случае ∆𝐴𝐵𝐶 является равносторонним. 

 

Задача 2. Вычислите минимальное значение суммы 𝑋𝐴2 +  𝑋𝐵2 + 𝑋𝐶2, если стороны 

∆𝐴𝐵𝐶 равны 𝑎, 𝑏, 𝑐. 

Решение. Для данного случая 𝑋 ≡ 𝑀 (смотрите следствие 2 из теоремы Лейбница). 

Таким образом, 

(𝑋𝐴2 +  𝑋𝐵2 + 𝑋𝐶2)𝑚𝑖𝑛 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 =  
4

9
(𝑚𝑎

2 + 𝑚𝑏
2 + 𝑚𝑐

2) 

Поскольку сумма квадратов медиан треугольника составляет  
3

4
  суммы квадратов всех 

его сторон (известный факт), то 

(𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2)𝑚𝑖𝑛 =
4

9
∙

3

4
(𝑎2 + 𝑏2 + 𝑐2) =

1

3
(𝑎2 + 𝑏2 + 𝑐2) 

 

Задача 3. Найдите углы ∆𝐴𝐵𝐶, в котором 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 = 3𝑅2 

Решение. Пусть точка 𝑋 совпадает с точкой 𝑂 - центром описанной окружности ∆𝐴𝐵𝐶. 

Тогда по теореме Лейбница 

𝑂𝐴2 + 𝑂𝐵2 + 𝑂𝐶2 = 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑂𝑀2, или 

3𝑅2 = 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑂𝑀2 

Учитывая условие, получаем 𝑂𝑀 = 0. Это возможно только в равностороннем 

треугольнике. Итак, все углы ∆𝐴𝐵𝐶 равны по 60°. 

 

рис. 2 

 



Задача 4. Около равностороннего треугольника 

𝐴𝐵𝐶 описана окружность радиуса 𝑅. Докажите, что 

для любой точки этой окружности сумма квадратов её 

расстояний до вершин треугольника 𝐴𝐵𝐶 постоянна. 

Найдите значение этой суммы. 

Решение. Пусть 𝑋 — произвольная точка 

окружности 𝜔, описанной около равностороннего 

АВС (рис. 3). Поскольку центр окружности 𝜔 — точка 

𝑂 − совпадает с центроидом 𝑀 (∆𝐴𝐵𝐶 - 

равносторонний), то по теореме Лейбница  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 = 𝑂𝐴2 + 𝑂𝐵2 + 𝑂𝐶2 + 3𝑂𝑋2 =

= 3𝑅2 + 3𝑅2 = 6𝑅2 = 𝑐𝑜𝑛𝑠𝑡 

 

Задача 5. В равносторонний ∆𝐴𝐵𝐶 со стороной 𝑎 вписана окружность. Найдите сумму 

квадратов расстояний от произвольной точки этой окружности до вершин треугольника 

𝐴𝐵𝐶. 

Решение. Пусть окружность 𝑠 с центром I вписана 

в равносторонний ∆𝐴𝐵𝐶 со стороной 𝑎 (рис. 4). 

Очевидно, 𝐼 ≡ 𝑀 (𝑀 - центроид в ∆𝐴𝐵𝐶). Тогда, 

согласно теореме Лейбница, для произвольной точки 

𝑋 окружности 𝑠 имеем: 

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2

=
1

3
(𝑎2 + 𝑏2 + 𝑐2) + 3𝑟2 

где r - радиус окружности 𝑠. Так как в равностороннем 

треугольнике 𝑟 =
𝑎

2√3
  (покажите!), то 

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 = 𝑎2 + 3
𝑎2

12
=

5𝑎2

4
 

 

Задача 6. Окружность делит каждую сторону 

равностороннего треугольника ∆𝐴𝐵𝐶 на три равные 

части. Докажите, что сумма квадратов расстояний от 

произвольной точки этой окружности до вершин 

треугольника есть величина постоянная. 

Доказательство. Пусть 𝑋 — произвольная точка 

данной окружности. Опишем окружность около ∆𝐴𝐵𝐶 

(рис. 5). Обозначим радиусы большей и меньшей 

окружностей соответственно через 𝑅1 и 𝑅2. Нетрудно 

показать, что центры окружностей совпадают с 

центром треугольника. Поскольку 𝑂 ≡ 𝑀 (𝑀 — 

центроид в ∆𝐴𝐵𝐶), то по теореме Лейбница  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 = 𝑂𝐴2 + 𝑂𝐵2 + 𝑂𝐶2 + 3𝑂𝑋2 = 3𝑅1
2 + 3𝑅2

2 = 𝑐𝑜𝑛𝑠𝑡 

рис. 3 

 

 

рис. 4 

 

 

 

рис. 5 

 

 

 

 



 

Задача 7. Дан ∆𝐴𝐵𝐶 с центроидом 𝑀. Около него 

описана окружность 𝜔 с центром в точке 𝑂. 

Постройте на окружности точку, сумма квадратов 

расстояний от которой до вершин ∆𝐴𝐵𝐶, а) 

минимальна; б) максимальна. 

Решение. Проведем прямую 𝑂𝑀, совпадающую 

с диаметром окружности 𝜔. Пусть эта прямая 

пересекает 𝜔 в точках 𝐾 и 𝑁 (рис. 6). Тогда 𝑀𝑁 - 

наименьшее расстояние от центроида 𝑀 до 𝜔, а 𝑀𝐾 

- наибольшее (докажите это, воспользовавшись 

неравенством треугольника). Так как 

 𝑁𝐴2 +  𝑁𝐵2 +  𝑁𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑁𝑀2, 

а также 𝐾𝐴2 +  𝐾𝐵2 +  𝐾𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝐾𝑀2, то очевидно, первая сумма 

будет минимальной, а вторая — максимальной. Таким образом, 𝑁 и 𝐾 — искомые точки. 

 

Задача 8. Найдите точку, сумма квадратов расстояний от которой до вершин данного 

треугольника 𝐴𝐵𝐶 минимальна, если эта точка находится:  

а) на высоте 𝐴𝐻1 треугольника 𝐴𝐵𝐶;  

б) на данной прямой 𝑞;  

в) на стороне 𝐵𝐶;  

г) на контуре треугольника 𝐴𝐵𝐶. 

Решение. Поскольку во всех случаях сумма 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 постоянна, то в каждом 

отдельном случае необходимо искать кратчайшее расстояние от центроида 𝑀 до  

а) высоты 𝐴𝐻1; 

б) прямой 𝑞; 

в) стороны 𝐵𝐶;  

г) сторон треугольника 𝐴𝐵𝐶. 

На рис. 7 (а-г) искомыми точками соответственно являются 𝐷;  𝐹;  𝐾;  𝑁. Заметим, что 

𝑀𝑁 - наименьшее из расстояний от центроида 𝑀 до сторон треугольника ∆𝐴𝐵𝐶 (рис. 7, г) 
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рис. 7в 

 

 

 

 

 

рис. 7г 

 

 

 

 

 



Задача 9. Два треугольника - правильный ∆𝐴𝐵𝐶 со 

стороной 𝑎, а также равнобедренный прямоугольный 

∆𝐾𝑁𝑇 с катетами 𝑏 - расположены так, что их центроиды 

совпадают. Найдите сумму квадратов расстояний от всех 

вершин одного из треугольников до всех вершин 

другого. 

Решение. Итак, 𝐴𝐵 = 𝐵𝐶 = 𝐴𝐶 = 𝑎; 𝐾𝑁 = 𝐾𝑇 = 𝑏 и 

𝑁𝑇 = 𝑏√2 (рис. 8). Найдём сумму квадратов расстояний 

от точки 𝐴 до вершин ∆𝐾𝑁𝑇. Согласно теореме Лейбница  

𝐴𝐾2 + 𝐴𝑁2 +  𝐴𝑇2 =  𝑀𝐾2 + 𝑀𝑁2 + 𝑀𝑇2 + 3𝐴𝑀2, 

где 𝑀𝐾2 + 𝑀𝑁2 + 𝑀𝑇2 =  
1

3
(𝑏2 + 𝑏2 + 2𝑏2) =

4

3
𝑏2(задача 2)  

 

𝐴𝑀 =  
𝑎

√3
 — как радиус описанной около АВС окружности.  

Тогда 𝐴𝐾2 +  𝐴𝑁2 +  𝐴𝑇2 =
4

3
𝑏2 + 3

𝑎2

3
=

4

3
𝑏2 + 𝑎2 

Аналогично  

𝐵𝐾2 +  𝐵𝑁2 +  𝐵𝑇2 =
4

3
𝑏2 + 𝑎2 и 

𝐶𝐾2 +  𝐶𝑁2 +  𝐶𝑇2 =
4

3
𝑏2 + 𝑎2  

Следовательно, искомая сумма равна 4𝑏2 + 3𝑎2 

 

Задача 10. Дана окружность 𝜔 с центром 𝐶 и две 

точки 𝐴 и 𝐵 — вне окружности. Найти на окружности 

точку 𝐾 такую, чтобы 𝐾𝐴2 + 𝐾𝐵2 = 𝑡2, где 𝑡 — 

заданный отрезок. 

Решение. Пусть задача решена. Соединим тогда 

точки друг с другом. Пусть также 𝐵𝐶 = 𝑎; 𝐴𝐶 = 𝑏 и 

𝐴𝐵 = 𝑐 — известные отрезки. Нетрудно также найти  

центроид 𝑀 в ∆𝐴𝐵𝐶 (провести в нём 2 медианы). 

Воспользуемся теоремой Лейбница: 

 𝐾𝐴2 + 𝐾𝐵2 +  𝐾𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝐾𝑀2 

Но 𝐾𝐴2 + 𝐾𝐵2 = 𝑡2 (по условию); 𝐾𝐶2 = 𝑅2 и 

𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 =  
1

3
(𝑎2 + 𝑏2 + 𝑐2). Следовательно, 

имеем:  

𝑡2 + 𝑅2 =
1

3
(𝑎2 + 𝑏2 + 𝑐2) + 3𝐾𝑀2 

Пусть 𝑡2 + 𝑅2 = 𝑛2, а  
1

3
(𝑎2 + 𝑏2 + 𝑐2) = 𝑞2.  

Тогда 𝐾𝑀2 =
𝑛2−𝑞2

3
 и 𝐾𝑀 = √

𝑛2−𝑞2

3
  

рис. 8 

 

 

 

 

рис. 9 

 

 

 

 



Такой отрезок легко строится. После чего из точки 𝑀 раствором циркуля, равным 𝑀𝐾, 

делаем засечку на окружности. 

 

Задача 11. Стороны ∆𝐴𝐵𝐶 равны 𝑎, 𝑏, 𝑐. Найти расстояние 𝑂𝑀 между центром 

описанной окружности ∆𝐴𝐵𝐶 и его центроидом. 

Решение. Пусть Х≡О. Тогда  

𝑂𝐴2 + 𝑂𝐵2 + 𝑂𝐶2 = 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑂𝑀2, или 

3𝑅2 =
1

3
(𝑎2 + 𝑏2 + 𝑐2) + 3𝑂𝑀2 откуда 𝑂𝑀 =

1

3
√9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2), где 𝑅 =

𝑎𝑏𝑐

4𝑆
, а 

площадь 𝑆 можно найти по формуле Герона. 

Замечание. Поскольку точки 𝑂, 𝑀 и 𝐻 (ортоцентр ∆𝐴𝐵𝐶) лежат на одной прямой 

(прямой Эйлера) и 2𝑂𝑀 = 𝑀𝐻, то 𝑀𝐻 =
2

3
√9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2) и 𝑂𝐻 =

√9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2). 

 

Задача 12. Из всех треугольников, вписанных в данный круг, равносторонний имеет 

наибольшую сумму квадратов сторон. Докажите! 

Доказательство. Согласно задаче 11 𝑂𝑀 =
1

3
√9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2). Очевидно, 

(𝑎2 + 𝑏2 + 𝑐2)𝑚𝑎𝑥 = 9𝑅2 и тогда 𝑂𝑀 = 0, что достигается в равностороннем 

треугольнике. 

 

Задача 13. Пусть 𝐻 — ортоцентр ∆𝐴𝐵𝐶. Докажите справедливость формулы:  

𝐻𝐴2 + 𝐻𝐵2 + 𝐻𝐶2 = 12𝑅2 − (𝑎2 + 𝑏2 + 𝑐2) 

Доказательство. По теореме Лейбница 

𝐻𝐴2 + 𝐻𝐵2 + 𝐻𝐶2 = 𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝐻𝑀2 

Так как 𝑀𝐻2 =
4

9
(9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2)) - см. примечание к задаче 11, то  

𝐻𝐴2 + 𝐻𝐵2 + 𝐻𝐶2 =
1

3
(𝑎2 + 𝑏2 + 𝑐2) + 3 ∙

4

9
(9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2)), откуда получим 

требуемое: 𝐻𝐴2 + 𝐻𝐵2 + 𝐻𝐶2 = 12𝑅2 − (𝑎2 + 𝑏2 + 𝑐2) 

Следствие. Поскольку 𝑂𝐻2 = 9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2) — см. замечание к задаче 11, то 

𝐻𝐴2 + 𝐻𝐵2 + 𝐻𝐶2 = 3𝑅2 + 𝑂𝐻2 

 

Задача 14. Докажите, что 𝑎2 + 𝑏2 + 𝑐2 ≤ 9𝑅2 

Доказательство. Подкоренное выражение в формуле задачи 11 

𝑂𝑀 =
1

3
√9𝑅2 − (𝑎2 + 𝑏2 + 𝑐2) должно быть неотрицательным, откуда 𝑎2 + 𝑏2 + 𝑐2 ≤ 9𝑅2. 

 

Задача 15. Докажите справедливость неравенства для углов ∆𝐴𝐵𝐶: 

𝑠𝑖𝑛2𝐴 + 𝑠𝑖𝑛2𝐵 + 𝑠𝑖𝑛2𝐶 ≤
9

4
 

Доказательство. По теореме синусов для ∆𝐴𝐵𝐶: 
𝑎

𝑠𝑖𝑛 𝐴
= 2𝑅, отсюда 𝑠𝑖𝑛 𝐴 =

𝑎

2𝑅
. 

Аналогично 𝑠𝑖𝑛 𝐵 =
𝑏

2𝑅
 и 𝑠𝑖𝑛 𝐶 =

𝑐

2𝑅
. Тогда 𝑠𝑖𝑛2𝐴 + 𝑠𝑖𝑛2𝐵 + 𝑠𝑖𝑛2𝐶 =

𝑎2+𝑏2+𝑐2

4𝑅2 . С учетом 

неравенства 𝑎2 + 𝑏2 + 𝑐2 ≤ 9𝑅2 (задача 14), получим: 𝑠𝑖𝑛2𝐴 + 𝑠𝑖𝑛2𝐵 + 𝑠𝑖𝑛2𝐶 ≤
9

4
 



 

Задача 16. Докажите, что для медиан ∆𝐴𝐵𝐶 выполняется неравенство: 

𝑚𝑎
2 + 𝑚𝑏

2 + 𝑚𝑐
2 ≤

27𝑅2

4
 

Доказательство. Известно, что 𝑚𝑎
2 + 𝑚𝑏

2 + 𝑚𝑐
2 =

3

4
(𝑎2 + 𝑏2 + 𝑐2) (покажите!), тогда 

𝑚𝑎
2 + 𝑚𝑏

2 + 𝑚𝑐
2 =

3

4
(𝑎2 + 𝑏2 + 𝑐2) ≤

3

4
∙ 9𝑅2 =

27𝑅2

4
 

Задача 17. Докажите справедливость неравенства для любой точки 𝑋 в плоскости ∆𝐴𝐵𝐶: 

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 ≥
4

9
𝑝2, где 𝑝 — полупериметр ∆𝐴𝐵𝐶. 

Доказательство. Согласно теореме Лейбница  

𝑋𝐴2 + 𝑋𝐵2 + 𝑋𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑋𝑀2, или  

𝑋𝐴2 + 𝑋𝐵2 + 𝑋𝐶2 =  
1

3
(𝑎2 + 𝑏2 + 𝑐2) + 3𝑋𝑀2, или  

𝑋𝐴2 + 𝑋𝐵2 + 𝑋𝐶2 ≥  
1

3
(𝑎2 + 𝑏2 + 𝑐2). 

Нетрудно показать, что 3(𝑎2 + 𝑏2 + 𝑐2)  ≥ (𝑎 + 𝑏 + 𝑐)2. Действительно, это неравенство 

сводится к знаменитому “неравенству трёх квадратов”: 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 

Тогда тем более 𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 ≥
(𝑎+𝑏+𝑐)2

9
=

4

9
𝑝2 

 

Задача 18. Внутри равностороннего ∆𝐴𝐵𝐶 

площади 𝑆 взята произвольная точка 𝑁. Докажите, что 

площадь треугольника со сторонами 𝑁𝐴;  𝑁𝐵;  𝑁𝐶 не 

превышает  
1

3
𝑆. 

Доказательство. Пусть 𝑁𝐴 = 𝑥; 𝑁𝐵 = 𝑦; 𝑁𝐶 = 𝑧. 

Повернём ∆𝐴𝐶𝑁 на 60° против часовой стрелки 

вокруг точки 𝐴 — получим ∆𝐴𝐷𝐵 (рис. 10). При этом 

∆𝐴𝐷𝑁 — равносторонний треугольник со стороной 𝑥. 

А стороны ∆𝑁𝐷𝐵 равны 𝑥;  𝑦;  𝑧. Повернём ∆𝐵𝐴𝑁 

вокруг точки 𝐵 на 60° против часовой стрелки — 

получим ∆𝐵𝐶𝐹. И при этом ∆𝐵𝑁𝐹 - равносторонний 

со стороной 𝑦. А у ∆𝐶𝐹𝑁 стороны равны 𝑥;  𝑦;  𝑧. 

После поворота ∆𝐶𝐵𝑁 на 60° против часовой стрелки вокруг точки 𝐶 получим 

равносторонний ∆𝐶𝑁𝑇 со стороной 𝑧 и ∆𝐴𝑁𝑇 со сторонами 𝑥;  𝑦;  𝑧. Очевидно, площадь 

шестиугольника 𝑇𝐴𝐷𝐵𝐹𝐶 равна 2𝑆 (снаружи ∆𝐴𝐵𝐶 оказались такие же площадки, что и 

внутри него). В то же время шестиугольник 𝑇𝐴𝐷𝐵𝐹𝐶 состоит из трёх равносторонних 

треугольников соответственно со сторонами 𝑥;  𝑦;  𝑧. А также из трёх равных треугольников 

∆𝑁𝐷𝐵; ∆𝐶𝐹𝑁; ∆𝑁𝐴𝑇. У этих треугольников стороны равны 𝑥;  𝑦;  𝑧. Пусть площадь каждого 

из них равна 𝑆1. И необходимо показать, что 𝑆1 ≤
1

3
𝑆. Поскольку сумма площадей всех 

шести треугольников равна 2𝑆, или 
𝑥2√3

4
+

𝑦2√3

4
+

𝑧2√3

4
+ 3𝑆1 = 2𝑆, то остаётся показать, что 

𝑥2√3

4
+

𝑦2√3

4
+

𝑧2√3

4
≥ 𝑆. Тогда очевидно, что 3𝑆1 ≤ 𝑆 и 𝑆1 ≤

1

3
𝑆.  

рис. 10 

 

 

 

 

 



Покажем, что 
𝑥2√3

4
+

𝑦2√3

4
+

𝑧2√3

4
≥

𝑎2√3

4
, где 𝑎 — сторона ∆𝐴𝐵𝐶, или (что тоже самое) 

покажем, что 𝑥2 + 𝑦2 + 𝑧2 ≥ 𝑎2. По теореме Лейбница для ∆𝐴𝐵𝐶 имеем: 

𝑁𝐴2 +  𝑁𝐵2 +  𝑁𝐶2 =  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 3𝑁𝑀2, где М≡О в равностороннем ∆𝐴𝐵𝐶. 

Или  𝑥2 + 𝑦2 + 𝑧2 =
1

3
(𝑎2 + 𝑎2 + 𝑎2) + 3𝑁𝑂2  

    𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 + 3𝑁𝑂2 ≥ 𝑎2 Тогда 3𝑆1 (сумма площадей треугольников 

∆𝑁𝐵𝐷; ∆𝐶𝐹𝑁; ∆𝑁𝐴𝑇) не превышает площади ∆𝐴𝐵𝐶, или 𝑆1 ≤
1

3
𝑆. 

 

Задача 19. Докажите, что в условиях предыдущей задачи справедлива формула: 

𝑆1 =
√3

12
(𝑎2 − 3𝑑2), где 𝑁𝑂 =  𝑑. 

Доказательство. В задаче 18 было показано, что 
𝑥2√3

4
+

𝑦2√3

4
+

𝑧2√3

4
+ 3𝑆1 = 2𝑆, или 

√3

4
(𝑁𝐴2 + 𝑁𝐵2 +  𝑁𝐶2) + 3𝑆1 = 2𝑆. Кроме того, по т. Лейбница было получено: 𝑁𝐴2 +

 𝑁𝐵2 +  𝑁𝐶2 = 𝑎2 + 3𝑁𝑂2 = 𝑎2 + 3𝑑2. Тогда имеем: 
√3

4
(𝑎2 + 3𝑑2) + 3𝑆1 = 2𝑆. 

Следовательно, 3𝑆1 =
𝑎2√3

2
−

𝑎2√3

4
−

3𝑑2√3

4
, откуда 𝑆1 =

√3

12
(𝑎2 − 3𝑑2). 

Замечание. Если только 𝑁 находится в плоскости ∆𝐴𝐵𝐶, но вне треугольника, то 

полученная формула примет вид:  𝑆1 =
√3

12
|𝑎2 − 3𝑑2| 

 

Отметим что планиметрическая теорема имеет свой аналог в стереометрии. 

 

Задача 20. Пусть медианы тетраэдра 𝐷𝐴𝐵𝐶  (отрезки 

соединяющие вершины с центроидами 

противоположенных граней) пересекаются в точке 𝑀. 

Тогда для любой точки 𝑋 пространства справедливо 

соотношение:  

𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 + 𝑋𝐷2

=  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 𝑀𝐷2 + 4𝑋𝑀2 

Указание. Доказательство аналогично доказательству 

теоремы Лейбница в планиметрии с помощью векторов. 

С учётом того факта, что медианы тетраэдра также 

пересекаются в одной точке и делятся ею в отношении 

3: 1, считая от вершины. Например, 𝐷𝑀: 𝑀𝐺 = 3: 1 (рис. 11) 

 

Задача 21. Найдите точку, сумма квадратов расстояний от которой до всех вершин 

данной треугольной пирамиды минимальна. 

Доказательство. Согласно соотношению задачи 20 нетрудно видеть, что 

(𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 + 𝑋𝐷2)𝑚𝑖𝑛 — в случае, когда Х≡М. То есть, требуемая сумма 

приобретает минимум в точке пересечения медиан данной треугольной пирамиды. 

 

рис. 11 

 

 

 

 

 



Задача 22. Сумма квадратов трёх ребер тетраэдра, принадлежащих одной грани, меньше 

утроенной суммы квадратов трёх других его ребер. Докажите! 

Доказательство. Пусть в тетраэдре 𝐷𝐴𝐵𝐶  

скрещивающиеся рёбра равны: 𝑎 и 𝑎1 (𝐵𝐶 и 𝐷𝐴 

соответственно); 𝑏 и 𝑏1 (𝐴𝐶 и 𝐷𝐵); 𝑐 и 𝑐1 (𝐴𝐵 и 𝐷𝐶). 

Пусть также 𝑀 — точка пересечения медиан 

тетраэдра 𝐷𝐴𝐵𝐶, а 𝐺 — центроид грани 𝐴𝐵𝐶 (рис. 

12). Нетрудно показать, что 𝐷𝐺 =
1

3
(𝐷𝐴 + 𝐷𝐵 + 𝐷𝐶) 

или 𝐷𝐺 =
1

3
(𝑎1 + 𝑏1 + 𝑐1). После возведения 

последнего векторного равенства в квадрат и 

применения теоремы косинусов получим: 𝐷𝐺2 =
1

9
(3𝑎1

2 + 3𝑏1
2 + 3𝑐1

2 − 𝑎2 − 𝑏2 − 𝑐2). Так как 𝐷𝑀 =
3

4
𝐷𝐺, то 

𝐷𝑀2 =
9

16
𝐷𝐺2 =

1

16
(3𝑎1

2 + 3𝑏1
2 + 3𝑐1

2 − 𝑎2 − 𝑏2 − 𝑐2). Применив аналогичные формулы 

к 𝐴𝑀2;  𝐵𝑀2;  𝐶𝑀2 после сложения всех четырех равенств находим:  

𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 𝑀𝐷2 =
1

4
(𝑎1

2 + 𝑏1
2 + 𝑐1

2 + 𝑎2 + 𝑏2 + 𝑐2). 

Согласно теореме стереометрической Лейбница (задача 20): 

 𝑋𝐴2 +  𝑋𝐵2 +  𝑋𝐶2 + 𝑋𝐷2 ≥  𝑀𝐴2 + 𝑀𝐵2 + 𝑀𝐶2 + 𝑀𝐷2.  

Пусть Х≡D. Тогда имеем: 𝐷𝐴2 + 𝐷𝐵2 + 𝐷𝐶2 ≥ 𝑀𝐴2 + 𝑀𝐵2 + +𝑀𝐶2 + 𝑀𝐷2, или 

𝑎1
2 + 𝑏1

2 + 𝑐1
2 =

1

4
(𝑎1

2 + 𝑏1
2 + 𝑐1

2 + 𝑎2 + 𝑏2 + 𝑐2), или 

3

4
(𝑎1

2 + 𝑏1
2 + 𝑐1

2) ≥
1

4
(𝑎2 + 𝑏2 + 𝑐2), или (𝑎2 + 𝑏2 + 𝑐2) ≤ 3(𝑎1

2 + 𝑏1
2 + 𝑐1

2). Поскольку 

𝑋 ≡ 𝐷 и не совпадает с 𝑀, то неравенство является строгим: 

(𝑎2 + 𝑏2 + 𝑐2) < 3(𝑎1
2 + 𝑏1

2 + 𝑐1
2) 

 

Перед тем как перейти к задачам для самостоятельного решения, предложим авторское 

доказательство теоремы Пифагора. 

 

Задача 23. Докажите справедливость 

теоремы Пифагора: сумма квадратов 

катетов равна квадрату гипотенузы. 

Доказательство. Пусть точка 𝑋 

совпадает с вершиной прямого угла, а 

точка 𝐶 — с серединой отрезка 𝐴𝐵. В этом 

случае ∆𝐴𝐵𝐶 — вырожденный и его 

центроид 𝑀 совпадает с точкой 𝐶 (рис. 13). 

Пусть также ХА = 𝑎; ХВ = 𝑏; 𝐴𝐵 = 𝑐 и 

𝐴𝐶 = 𝐵𝐶 = 𝑋𝐶 =
𝑐

2
. Тогда для данного 

случая теорема Лейбница запишется следующим образом: 

Рис. 12 

 

 

 

 

Рис. 13 

 

 

 

 

 



 𝑋𝐴2 + 𝑋𝐵2 + 𝑋𝐶2 = 𝐶𝐴2 + 𝐶𝐵2 + 𝐶𝐶2 + 3𝑋𝐶2, или 𝑎2 + 𝑏2 +
𝑐2

4
=

𝑐2

4
+

𝑐2

4
+ 0 + 3

𝑐2

4
, 

откуда 𝑎2 + 𝑏2 = 𝑐2. Теорема Пифагора доказана. 

 

Теорема Лейбница в задачах для самостоятельного решения. 

 

Задача 24. ∆𝐴𝐵𝐶 и ∆𝐾𝑁𝑇 имеют общий центроид 𝑀. Докажите, что сумма квадратов 

расстояний всех вершин одного треугольника до всех вершин другого не зависит от 

расположения этих треугольников на плоскости. 

 

Задача 25. Пусть Е — центр окружности Эйлера в треугольнике ∆𝐴𝐵𝐶. Докажите, что 

𝐸𝐴2 +  𝐸𝐵2 +  𝐸𝐶2 =
1

4
(3𝑅2 + 𝑎2 + 𝑏2 + 𝑐2). 

 

Задача 26. Докажите, что расстояние 𝑀𝐼 между центроидом и инцентром треугольника 

𝐴𝐵𝐶 вычисляется по формуле: 𝑀𝐼 =
1

3
√9𝑟2 − 3𝑝2 + 2(𝑎2 + 𝑏2 + 𝑐2), где 𝑟 — радиус 

окружности, вписанной в ∆𝐴𝐵𝐶; 𝑝 — полупериметр ∆𝐴𝐵𝐶. 

 

Задача 27. Дан ∆𝐴𝐵𝐶 площади 𝑆, все углы которого меньше 120°. Найдите расстояние 

от точки 𝑇 Торричелли треугольника 𝐴𝐵𝐶 до центроида 𝑀 этого треугольника. 

Ответ. 𝑇𝑀 =
1

3
√

𝑎2+𝑏2+𝑐2

2
− 2𝑆√3 

 

Задача 28. Сумма квадратов расстояний от произвольной точки сферы до вершин 

вписанного в окружность её большого круга правильного треугольника есть величина 

постоянная. Докажите! 

 

Задача 29. Сумма квадратов расстояний от произвольной точки внутри тетраэдра (или 

на его поверхности) до всех вершин тетраэдра не меньше четверти суммы квадратов всех 

его рёбер. Докажите! 

 

Г. Филипповский, 

Ф. Бобылев. 

 

Русановский лицей, 

г. Киев. 


